

LoTi Technology Use Profile

State of New Hampshire

- During the 2001-02 school year, a technology use profile was conducted in the State of New Hampshire to
 create baseline data as to the current level of technology implementation in schools statewide. Such information will enable all stakeholders to target funding sources and provide professional development opportunities directed at moving New Hampshire 's educators to a higher level of technology implementation in the
 classroom, and in doing so, better prepare students for the challenges facing them in a highly
 competitive,technology-oriented society.
- The challenge is not merely to use technology to achieve isolated tasks (e.g.,word processing a research paper, creating a multimedia slide show, browsing the Internet), but rather to integrate technology in an exemplary manner that supports purposeful problem-solving,performance-based assessment practices,and experiential learning —all vital characteristics of the National Education Technology Standards (NETS) as established by the International Society for Technology in Education (ISTE).
- A 50 item survey referred to as the Level of Technology Implementation (LoTi) Questionnaire was administered to 6,285 New Hampshire educators in 85 school districts. The questionnaire generated a profile for each respondent in three domains: Level of Technology Implementation (LoTi), Personal Computer Use (PCU), and Current Instructional Practices (CIP). A separate version of the LoTi Questionnaire was administered to four different groups in the state: Inservice Teacher, Instructional Specialist, Media Specialist, and Building Administrator.
- The LoTi Technology Use Profile focused on the use of technology as an interactive learning medium because this particular component has the greatest and lasting impact on classroom pedagogy and is the most difficult to implement and assess. The questionnaire generated a profile for each respondent in three domains: Level of Technology Implementation (LoTi), Personal Computer Use (PCU), and Current Instructional Practices (CIP). The Level of Technology Implementation (LoTi) profile approximated the degree to which each respondent was either implementing technology (i.e., computers) into the curriculum (i.e., inservice teacher, instructional specialist) or modeling/supporting the implementation of technology (e.g., building administrator, media specialist). The Personal Computer Use (PCU) profile either addressed each respondent's comfort and proficiency levels with using computers. The Current Instructional Practices (CIP) profile revealed each respondent's inclination toward instructional practices consistent with either a subject-matter or learner-based curriculum design.

• The creation of the LoTi Questionnaire and the identification of a LoTi profile for individual teachers, instructional specialists, media specialists, and building administrators were based primarily on the work of Moersch (1995) and his identification of specific levels of technology implementation (see Table 1). These levels range from Nonuse (Level 0) to Refinement (Level 6). As a classroom teacher progresses from one level to the next (Level 3 to Level 4) of the LoTi framework, a corresponding series of changes to the instructional curriculum is observed. The instructional focus shifts from a teacher-centered to a learner-centered orientation while the use of computers shifts from an emphasis on isolated uses (e.g., drill & practice applications) to an expanded view of technology as a process, product, and tool to augment and enhance students' critical thinking and help them find viable solutions to real world problems. (see Table 2)

Table 1: The Levels of Technology Implementation (LoTi) Framework

Level O - Nonuse

Technology-based tools (e.g., computers) are either (1) completely unavailable in the classroom, (2) not easily accessible by the classroom teacher, or (3) there is a lack of time to pursue electronic technology implementation. Existing technology is predominately text-based (e.g., ditto sheets, chalkboard, overhead projector).

Level 1 - Awareness

The use of technology-based tools is either (1) used almost exclusively by the classroom teacher for classroom and/or curriculum management tasks (e.g., taking attendance, using grade book programs, accessing email), (2) used to embellish or enhance teacher-directed lessons or lectures (e.g., multimedia presentations) and/or (3) is one step removed from the classroom teacher (e.g., integrated learning system labs, special computer lab pull-out programs, central word processing labs).

Level 2 - Exploration

Technology-based tools supplement the existing instructional program (e.g., tutorials, educational games, basic skill applications) or complement selected multimedia and/or web-based projects (e.g., internet-based research papers, informational multimedia presentations) at the knowledge/comprehension level. The electronic technology is employed either as extension activities, enrichment exercises, or technology-based tools and generally reinforces the content under investigation.

Level 3 - Infusion

Technology-based tools including spreadsheet and graphing packages; multimedia and desktop publishing applications; and the internet complement selected instructional events or multimedia/web-based projects at the analysis, synthesis, and evaluation levels. Though the learning activity may or may not be perceived as authentic by students, emphasis is placed on using a variety of thinking skill strategies (e.g., problem-solving, decision-making, experimentation, scientific inquiry) to address the content under investigation.

Level 4a - Integration (Mechanical)

Technology-based tools are integrated in a mechanical manner that places heavy reliance on prepackaged materials, outside resources, and/or interventions that aid the teacher in the daily management of their operational curriculum. Technology is perceived as a tool to identify and solve authentic problems as perceived by the students relating to an overall theme/concept. Emphasis is placed on student action and/or on issues resolution that requires higher levels of cognitive processing and in-depth examination of the content.

Level 4b - Integration (Routine)

Technology-based tools are integrated in a routine manner whereby teachers can readily design and implement learning experiences (e.g., units of instruction) that empower students to identify and solve authentic problems relating to an overall theme/concept using the school's available technology with little or no outside assistance. Emphasis is placed on student action and/or on issues resolution that requires higher levels of student cognitive processing and in-depth examination of the content.

Level 5 - Expansion

Technology access is extended beyond the classroom. Teachers actively elicit technology applications and networking from outside sources to expand student experiences directed at problem-solving, issues resolution, and student activism. The complexity and sophistication of the technology-based tools used are now commensurate with (1) the diversity, inventiveness, and spontaneity of the teacher's experiential-based approach and (2) the students' level of complex thinking and in-depth understanding of the content at hand.

Level 6 - Refinement

Technology is perceived as a process, product, and/or tool for students to find solutions related to an identified "real-world" problem or issue of significance to them. Technology provides a seamless medium for information queries, problem-solving, and/or product development. The classroom content emerges based on the needs of the learner according to his/her interests, needs, and/or aspirations and is supported by unlimited access to the most current computer applications and infrastructure available.

Table 2: Stages of Instructional Practices

Element Content	Stage 1 Content organized and delivered by traditional scope & sequence; Focus on teacher-based questions	Stage 2 Concepts and processes organized and presented based on the interests of the teacher and/or the learner	Stage 3 Concepts and processes emerge based on the needs of the learner; Focus on learner-based questions
Learning Materials	Organized by the content; heavy reliance on sequen- tial instructional materials	Emphasis on hands-on investigations and predefined problem solving strategies	Determined by the problem areas under study, extensive and diversified resources
Learning Activities	Traditional verbal activities; problem solving activities (e.g., worksheets; story problems)	Emphasis on student's active role; problem solving strategies with little or no connection to a broad concept or theme (e.g., verification lab from a science kit)	Emphasis on student activism and issues investigations and resolutions; authentic hands- on inquiry related to a problem under investigation; focus on experiential learning
Teaching Strategies	Expository approach	Facilitator; resource person	Co-learner/facilitator
Evaluation	Traditional evaluation practices including multiple-choice, short answer, and true/false questions	Uses multiple assessment strategies including performance tasks, and open-ended and problem- based questions	Multiple assessment strate- gies integrated authentically throughout the unit and linked to the problem/ concept; use of portfolios, open-ended questions, performance tasks, self- analysis, and peer review
Technology	Drill & practice computer- based programs (e.g., integrated learning sys- tems), computer games; little connection between technology use and overall concept/topic	Technology integrated into isolated hands-on experiences (e.g., tabulating and graphing data to analyze a survey or experiment; information searches using the Internet/CD-ROM)	Expanded view of technonlyy as a process, product, and tool to find solutions to authentic problems, communicate results, and retrieve information (e.g., spreadsheets, graphs, probes, databases, CD-ROM-based simulations, Web page development)

- Current research has found strong links between student academic achievement and the manner in which technology is used in the classroom. According to the National Assessment of Educational Progress (NAEP) study (1998), eighth grade students whose teachers used computers primarily for higher order thinking performed better on NAEP than students whose teachers did not. Conversely, eighth grade students whose teachers used computers primarily for "drill and practice"— generally associated with lower order thinking skills performed worse. Still, the majority of the research findings point to the teacher's role in the instructional planning process as the most important element in promoting student higher order thinking. Many of these studies investigating technology use practices and student performance (e.g., Flescher, 1997; Alvarez, 1998; Oliver, 1999; and Wiburg and Carter, 1994) discuss the importance of emergent curricula that engage students in meaningful ways as essential factors tied to student demonstration of higher order thinking.
- The LoTi Questionaire was created for the purpose of assessing classroom practices tied to higher order thinking skills and relevant, engaging curricula. Specifically, the LoTi Questionaire enables decision-makers to determine how all stakeholders at the school building level (e.g., inservice teachers, building administrators, media specialists, instructional specialists) are either implementing or supporting the use of technology tied to powerful teaching and learning opportunities directed at student achievement.
- Though the term, technology, embraces a variety of hardware applications used in the classroom including calculators, video cameras, and scanners, this questionnaire focused exclusively on the instructional uses of the computer. The information provided in this report was based exclusively on the perceptions of the staff who participated in the survey. A total of 6,285 educators from the State of New Hampshire completed the Level of Technology Implementation (LoTi) survey. The subsequent data analysis including all findings, goals, and recommendations are based on these returns.

 Figure 1 compares the number of participants who completed the LoTi survey by Position in the State of New Hampshire. Based on their responses, 85% of participants were inservice teachers compared to 6% preservice teachers, 3% media specialists, 1% higher education teachers, and 5% building administrators.

Figure 1

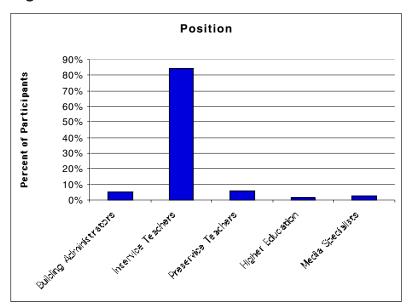
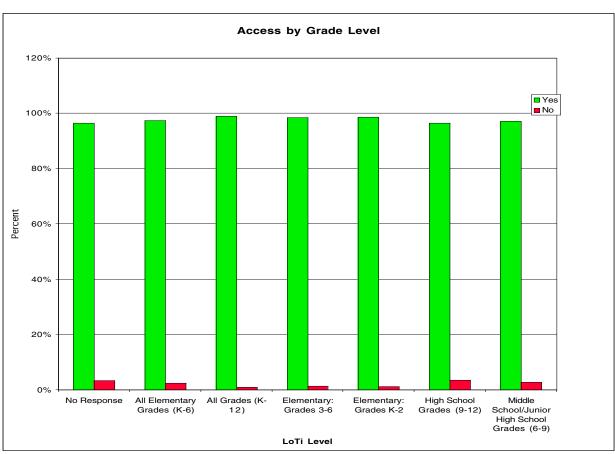
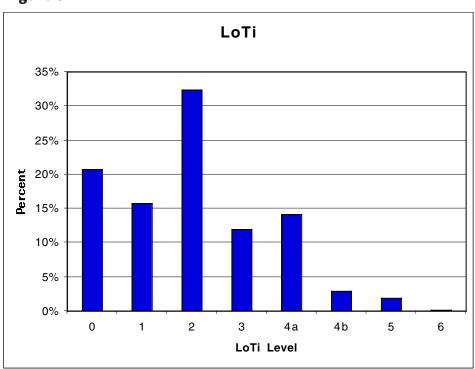
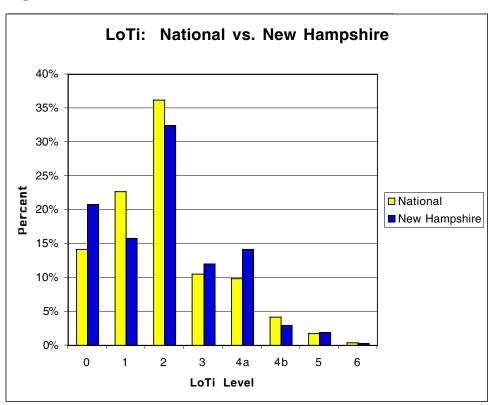



Figure 2 compares the availability of computer access versus no computer access across the State of New
Hampshire. Respondents were asked whether or not they had computer access in their classroom(s).
 Computer access implied that staff or students can use or borrow a computer within the school building for
instructional purposes; including computers in the classroom, computer labs, computers on carts, general
access computers in the Library or something similar. In the State of New Hampshire, the "no computer
access" response ranged from 0% to 2%.


Figure 2

- Figure 3 compares the 2001-02 Level of Technology Implementation (LoTi) ranking for the 6,285 participants
 in the State of New Hampshire. The LoTi profile approximates the degree to which each participant is
 implementing or supporting the implementation of computers into the curriculum. Based on their responses, the predominate level of technology implementation was at a Level 2 (Exploration) in the State of
 New Hampshire.
- A Level 2 implies technology-based tools supplement the existing instructional program (e.g., tutorials,
 educational games, basic skill applications) or complement selected multimedia and/or web-based projects
 (e.g., internet-based research papers, informational multimedia presentations) at the knowledge/comprehension level. The electronic technology is employed either as extension activities, enrichment exercises, or
 technology-based tools and generally reinforces the content under investigation.


Figure 3

- Figure 4 compares the 2001-02 Level of Technology Implementation (LoTi) percentage ranking for the 6,285
 participants in the State of New Hampshire with the percentage ranking of the 34,268 national LoTi participants from the 2001-2002 school year.
- During the 2001-02 school year, the predominate level of technology implementation in the State of New Hampshire and nationally was at Level 2 (Exploration) based on the responses from 6,285 State of New Hampshire and 34,268 national LoTi participants. Overall, the State of New Hampshire had a lower percentage of respondents at Levels 1 and 2, but a higher percentage level of participants at Levels 0, 3, and 4a.

Figure 4

• Figure 5 displays the Personal Computer User (PCU) profile for the 6,285 respondents in the State of New Hampshire during the 2001-02. The PCU profile addresses an individual's comfort and proficiency level with using computers (e.g., troubleshooting simple hardware problems, using multimedia applications). During the 2001-02 school year, the predominate intensity level for the 6,285 respondents in the State of New Hampshire was in the "Not True of Me Now" range (Intensity Level 2) regarding their ability to either use basic software applications, troubleshoot routine computer problems, or use computers routinely in the workplace.

Figure 5

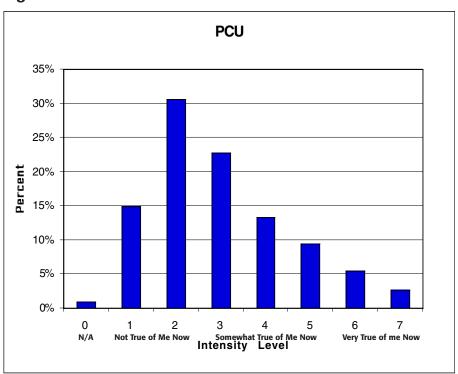
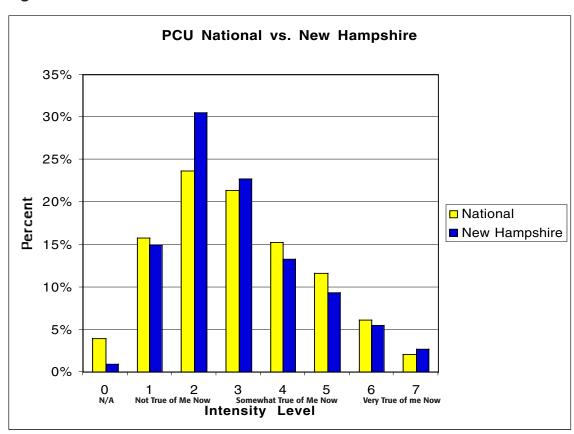
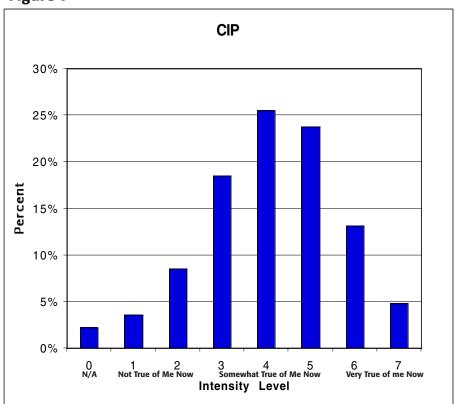



Figure 6 compares the percentage of respondents positioned at each of the PCU intensity levels for the State
of New Hampshire during the 2001-02 school year with the national respondents for the 2001-2002 school
year. The State of New Hampshire respondents had a slightly higher percentage of teachers in the "Not True
of Me Now" range and in the "Very True of Me Now" range compared to their national counterparts involving
Personal Computer Use (PCU).


Figure 6

• Figure 7 displays the Current Instructional Practices (CIP) profile for the 6,285 respondents in the State of New Hampshire during the 2001-02 school year. The CIP profile reveals the participant's inclination toward instructional practices consistent with a learner-based curriculum design (e.g., learning materials determined by the problem areas under investigation, multiple assessment strategies integrated authentically throughout the curriculum, teacher as co-learner/facilitator, focus on learner-based questions). During the 2001-02 school year, the predominate intensity level for the 6,285 participating staff members in the State of New Hampshire was in the "Somewhat True of Me Now" range (Intensity Level 4) regarding their use of a learner-based versus a subject-matter based curriculum approach.

Figure 7

• Figure 8 compares the percentage of respondents positioned at each of the CIP Intensity levels for the 6,285 respondents in the State of New Hampshire during the 2001-02 school year compared to the CIP intensity levels of the national LoTi participants from the 2001-02 school year. As mentioned above, the predominate intensity level for the 6,285 participating staff members in the State of New Hampshire was in the "Somewhat True of Me Now" range (Intensity Level 4) regarding their use of a learner-based versus a subject-matter based curriculum approach. Nationally, the predominate CIP intensity level was in the "Somewhat True of Me Now" range (Intensity Level 4) based on the 34,268 national LoTi participants from the 2001-02 school year.

Figure 8

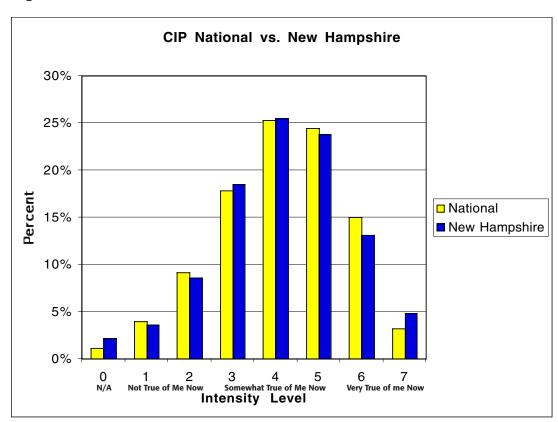
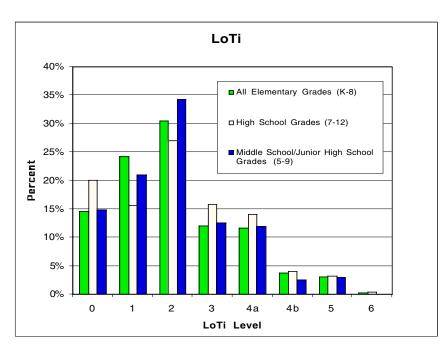
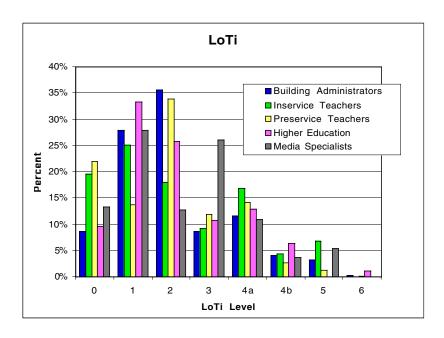



Figure 9 compares the percentage of respondents positioned at each of the LoTi Levels for the State of New
Hampshire during the 2001-02 school year according to Grade Level. The graph shows that all three grade
level categories (i.e., elementary, middle/junior high, high school) exhibited a Level 2 implementation of
technology in the State of New Hampshire.


Figure 9

- Figure 10 compares the percentage of respondents positioned at each of the LoTi Levels for the State of New Hampshire during the 2001-02 school year according to Position. The graph shows that Building Administrators and Pre-service Teachers exhibited a higher level of technology implementation than either Inservice Teachers, Media Specialists, or Higher Education Faculty in the State of New Hampshire. Building Administrators and Pre-service Teachers were more likely to be positioned at a Level 2 whereas Inservice Teachers, Media Specialists, and Higher Education Faculty were more likely to be positioned at a Level 1.
- A Level 1 implies that the use of technology-based tools is either (1) used almost exclusively by the class-room teacher for classroom and/or curriculum management tasks (e.g., taking attendence, using grade book programs, accessing email), (2) used to embellish or enhance teacher-directed lessons or lectures (e.g., multimedia presentations) and/or (3) is one step removed from the classroom teacher (e.g., integrated learning system labs, special computer lab pull-out program, central word processing labs).

- Approximately 5% of the participants completing the Level of Technology Implementation (LoTi) Question-naire self-assessed themselves at the Target Technology Level as defined by the CEO Forum on Education and Technology and the National Education Technology Standards (NETS). This level is characterized by technology use embedded in challenging and engaging learning experiences that promote problem-solving, critical thinking, and self-directed learning. This percentage closely mirrored the national Target Technology Level percentage of 6% based on a national sample of 34,268 participants.
- Approximately 69% of the 6,285 participants were clustered in Levels 0 through 2. These levels represent
 the lower portion of the LoTi Framework (see page 2) and focus primarily on teacher's use of productivity
 tools, student use of tutorial programs, and "project-based" learning opportunities at the knowledge/comprehension level.
- Approximately 97% of the participants reported having instructional access to computers for teacher and student use.
- Approximately 31% of New Hampshire educators who participated in this study felt comfortable using computers at home and in the workplace (e.g., accessing email, creating multimedia products, troubleshooting computer problems). This percentage was less than the national PCU (Personal Computer Use) percentage of 35% for this same item based on a national sample of 34,268 participants.
- Approximately 71% of New Hampshire educators indicated that they either supported or implemented one or more attributes of a learner-centered curriculum with or without a computer. This percentage was higher than the national CIP (Current Instructional Practices) percentage of 69% based on a national sample of 34,268 participants. A learner-centered curriculum includes attributes such as a focus on multiple assessment strategies, an emphasis on higher order thinking skills, and the creation of a problem-based learning environment. Research has found strong links between computers used in conjunction with these attributes and higher student achievement based on standardized test scores.
- Building Administrators and Pre-service Teachers exhibited a higher level of technology implementation than media specialists, inservice teachers, or higher education faculty.

Percent of staff at LoTi Level 0 There is no visible evidence of computer access or instructional use of computers in the classroom.	21%
Percent of staff at LoTi Level 1 Available classroom computer(s) are used primarily for teacher productivity (e.g., email, word processing, grading programs).	16%
Percent of staff at LoTi Level 2 Student technology projects (e.g., designing web pages, research via the internet, creating multimedia presentations) focus on the content under investigation.	32%
Percent of staff at LoTi Level 3 Tool-based applications (e.g., graphing, concept-mapping) are primarily used by students for analyzing data, making inferences, and drawing conclusions.	12%
Percent of staff at LoTi Level 4a The use of outside resources and/or interventions aid the teacher in developing challenging learning experiences using available classroom computers.	14%
Percent of staff at LoTi Level 4b (Target Technology Level) Teachers can readily design learning experiences with no outside assistance that empower students to identify and solve authentic problems using technology.	3%
Percent of staff at LoTi Level 5 Teachers actively elicit technology from outside entities to expand student experiences directed at problem-solving, issues resolution, and student action.	2%
Percent of staff at LoTi Level 6 Computers provide a seamless and almost transparent medium for information queries, problem-solving, and/or product development.	0%
Percent of staff indicating they HAVE access to computers for instructional purposes	97%

Recommendations for the Current School Year

One could argue that a "Digital Divide" does exist in classrooms throughout the State of New Hampshire, but not as it relates to access to or the availablity of hardware and software. The digital divide resulting from this study focuses on the manner in which technology is not being used in the state to address specific content standards. The fact that approximately 69% of the respondents "self-assessed" themselves at Levels 0-2 while only 5% self assessed themselves at the Target Technology Level should signal a concern as well as a need to reassess existing statewide professional development practices, mentoring opportunities, and methods of evaluating acceptable use of technology in the classroom. Provided below are recommendations consistent with this study's findings.

- Provide staff development that models specific strategies and techniques for integrating higher-order thinking skills with the available classroom computers using tool-based applications (e.g., spreadsheets, graphs, multimedia, databases, concept-mapping, internet tools). This recommendation is targeted at moving participants to Level 3 relating to their level of technology implementation.
- Provide staff development that increases participants confidence and competence with designing Level 4b (Target Technology) instructional modules using a constructivist, experiential-based approach to curriculum development. This recommendation is targeted at (1) moving participants to a Level 4a implementation of technology, (2) improving the perceptions of Level 4a participants regarding their ability to support or integrate technology at a Level 4a, and (3) moving participants to a Level 4b relating to their level of technology implementation.
- · Review existing statewide professional development programs in light of the results from this study. Approximately 69% of the survey participants self-assessed themselves at Levels 0-2, yet close to 71% of these same participants indicated that they were implementing one or more of the attributes of a learnercentered curriculum. It is respectfully recommended that stakeholders consider new approaches and/or modify existing approaches to statewide professional development so that educators can make better connections between technology use and student authentic problem-solving in the classroom. This recommendation is targeted at moving Level 1 and 2 survey participants to Level 3.

Bibliography

Alvarez, Marino C. (Oct., 1998). Developing critical and imaginative thinking within electronic literacy. NASSP Bulletin, 82(600), 41-7.

Archer, Jeffery. (October, 1, 1998). The link to higher scores. Technology in Schools supplement to Education Week, 28(5).

Flescher, Eric Z. (1997). Discovery and experiential-based learning with computer simulations. University of Kansas. Dissertation Abstracts, 59(04A).

Moersch, Christopher M. (1995). Levels of technology implementation (LoTi): a framework for measuring classroom technology use. Learning & Leading with Technology, 40-42.

Oliver, Kevin Matthew (1999). Student use of computer tools designed to scaffold scientific problem-solving with hypermedia resources: a case study. University of Georgia. Dissertation Abstracts, 60(05A).

Wiburg, Karin M. and Carter, Bruce (Sept. 1994). Thinking with computers. Computing Teacher, 22, 7-10.

For any further inquiries, please contact Learning Quest by any means listed below:		
Mail:		
Learning Quest, Inc.		
P. O. Box 61		
Corvallis, OR 97339		
Phone:		
541-753-3011		
Fax:		
541-753-6461		
Email:		
info@learning-quest.com		
Web:		
www.learning-quest.com		